CosmoGRaPH v0.0
Public Attributes | List of all members
cosmo::BSSNData Struct Reference

Structure containing BSSN metric variables and various derived quantities, such as derivatives of BSSN variables, christoffel symbols, etc. Most undocumented variables correspond to values taken from a particular field; most derived variables are documented. More...

#include <bssn_data.h>

Collaboration diagram for cosmo::BSSNData:
Collaboration graph
[legend]

Public Attributes

idx_t i
 
idx_t j
 
idx_t k
 
idx_t idx
 
real_t DIFFgamma11
 
real_t DIFFgamma12
 
real_t DIFFgamma13
 
real_t DIFFgamma22
 
real_t DIFFgamma23
 
real_t DIFFgamma33
 
real_t DIFFphi
 
real_t A11
 
real_t A12
 
real_t A13
 
real_t A22
 
real_t A23
 
real_t A33
 
real_t DIFFK
 
real_t Gamma1
 
real_t Gamma2
 
real_t Gamma3
 
real_t DIFFalpha
 
real_t DIFFr
 
real_t DIFFS
 
real_t S1
 
real_t S2
 
real_t S3
 
real_t STF11
 
real_t STF12
 
real_t STF13
 
real_t STF22
 
real_t STF23
 
real_t STF33
 
real_t ricci
 
real_t AijAij
 
real_t K0
 
real_t phi
 conformal factor \(\phi\)
 
real_t K
 extrinsic curvature \(K\)
 
real_t r
 density \(\rho\)
 
real_t S
 "pressure" (trace of \(S_{ij}\), or \(\gamma^{ij} S_{ij}\))
 
real_t alpha
 lapse, \(\alpha\)
 
real_t gamma11
 \(\bar{\gamma}_{11}\) (conformal 11 metric component)
 
real_t gamma12
 \(\bar{\gamma}_{12}\) (conformal 12 metric component)
 
real_t gamma13
 \(\bar{\gamma}_{13}\) (conformal 13 metric component)
 
real_t gamma22
 \(\bar{\gamma}_{22}\) (conformal 22 metric component)
 
real_t gamma23
 \(\bar{\gamma}_{23}\) (conformal 23 metric component)
 
real_t gamma33
 \(\bar{\gamma}_{33}\) (conformal 33 metric component)
 
real_t gammai11
 \(\bar{\gamma}^{11}\) (inverse conformal 11 metric component)
 
real_t gammai12
 \(\bar{\gamma}^{12}\) (inverse conformal 12 metric component)
 
real_t gammai13
 \(\bar{\gamma}^{13}\) (inverse conformal 13 metric component)
 
real_t gammai22
 \(\bar{\gamma}^{22}\) (inverse conformal 22 metric component)
 
real_t gammai23
 \(\bar{\gamma}^{23}\) (inverse conformal 23 metric component)
 
real_t gammai33
 \(\bar{\gamma}^{33}\) (inverse conformal 33 metric component)
 
real_t trace
 Generic re-usable variable for trace.
 
real_t expression
 Generic re-usable variable for any expression.
 
real_t ricci11
 full Ricci tensor component, \(R_{11}\)
 
real_t ricci12
 full Ricci tensor component, \(R_{12}\)
 
real_t ricci13
 full Ricci tensor component, \(R_{13}\)
 
real_t ricci22
 full Ricci tensor component, \(R_{22}\)
 
real_t ricci23
 full Ricci tensor component, \(R_{23}\)
 
real_t ricci33
 full Ricci tensor component, \(R_{33}\)
 
real_t ricciTF11
 full trace-free Ricci tensor component, \(R_{11}^{TF}\)
 
real_t ricciTF12
 full trace-free Ricci tensor component, \(R_{12}^{TF}\)
 
real_t ricciTF13
 full trace-free Ricci tensor component, \(R_{13}^{TF}\)
 
real_t ricciTF22
 full trace-free Ricci tensor component, \(R_{22}^{TF}\)
 
real_t ricciTF23
 full trace-free Ricci tensor component, \(R_{23}^{TF}\)
 
real_t ricciTF33
 full trace-free Ricci tensor component, \(R_{33}^{TF}\)
 
real_t Uricci11
 unitary Ricci tensor component, \(\bar{R}_{11}\)
 
real_t Uricci12
 unitary Ricci tensor component, \(\bar{R}_{12}\)
 
real_t Uricci13
 unitary Ricci tensor component, \(\bar{R}_{13}\)
 
real_t Uricci22
 unitary Ricci tensor component, \(\bar{R}_{22}\)
 
real_t Uricci23
 unitary Ricci tensor component, \(\bar{R}_{23}\)
 
real_t Uricci33
 unitary Ricci tensor component, \(\bar{R}_{33}\)
 
real_t unitRicci
 unitary Ricci scalar, \(\bar{R}\)
 
real_t D1D1aTF
 trace-free second covariant derivative of lapse, \((D_1 D_1 \alpha)^{TF}\)
 
real_t D1D2aTF
 trace-free second covariant derivative of lapse, \((D_1 D_2 \alpha)^{TF}\)
 
real_t D1D3aTF
 trace-free second covariant derivative of lapse, \((D_1 D_3 \alpha)^{TF}\)
 
real_t D2D2aTF
 trace-free second covariant derivative of lapse, \((D_2 D_2 \alpha)^{TF}\)
 
real_t D2D3aTF
 trace-free second covariant derivative of lapse, \((D_2 D_3 \alpha)^{TF}\)
 
real_t D3D3aTF
 trace-free second covariant derivative of lapse, \((D_3 D_3 \alpha)^{TF}\)
 
real_t DDaTR
 \(\gamma^{ij}D_i D_j \alpha\)
 
real_t d1a
 partial of alpha, \(\partial_1 \alpha\)
 
real_t d2a
 partial of alpha, \(\partial_2 \alpha\)
 
real_t d3a
 partial of alpha, \(\partial_3 \alpha\)
 
real_t D1D1phi
 conformal covariant second derivative of phi, \(\bar{D}_1 \bar{D}_1 \phi\)
 
real_t D1D2phi
 conformal covariant second derivative of phi, \(\bar{D}_1 \bar{D}_2 \phi\)
 
real_t D1D3phi
 conformal covariant second derivative of phi, \(\bar{D}_1 \bar{D}_3 \phi\)
 
real_t D2D2phi
 conformal covariant second derivative of phi, \(\bar{D}_2 \bar{D}_2 \phi\)
 
real_t D2D3phi
 conformal covariant second derivative of phi, \(\bar{D}_2 \bar{D}_3 \phi\)
 
real_t D3D3phi
 conformal covariant second derivative of phi, \(\bar{D}_3 \bar{D}_3 \phi\)
 
real_t d1phi
 \(\partial_1 \phi \)
 
real_t d2phi
 \(\partial_2 \phi \)
 
real_t d3phi
 \(\partial_3 \phi \)
 
real_t d1d1phi
 partial second derivative of phi, \(\partial_1 \partial_1 \phi\)
 
real_t d1d2phi
 partial second derivative of phi, \(\partial_1 \partial_2 \phi\)
 
real_t d1d3phi
 partial second derivative of phi, \(\partial_1 \partial_3 \phi\)
 
real_t d2d2phi
 partial second derivative of phi, \(\partial_2 \partial_2 \phi\)
 
real_t d2d3phi
 partial second derivative of phi, \(\partial_2 \partial_3 \phi\)
 
real_t d3d3phi
 partial second derivative of phi, \(\partial_3 \partial_3 \phi\)
 
real_t d1K
 \(\partial_1 K\)
 
real_t d2K
 \(\partial_2 K\)
 
real_t d3K
 \(\partial_3 K\)
 
real_t Acont11
 Contravariant form of conformal trace-free extrinsic curvature, \( \bar{A}^{11} \).
 
real_t Acont12
 Contravariant form of conformal trace-free extrinsic curvature, \( \bar{A}^{12} \).
 
real_t Acont13
 Contravariant form of conformal trace-free extrinsic curvature, \( \bar{A}^{13} \).
 
real_t Acont22
 Contravariant form of conformal trace-free extrinsic curvature, \( \bar{A}^{22} \).
 
real_t Acont23
 Contravariant form of conformal trace-free extrinsic curvature, \( \bar{A}^{23} \).
 
real_t Acont33
 Contravariant form of conformal trace-free extrinsic curvature, \( \bar{A}^{33} \).
 
real_t G111
 Conformal christoffel symbol, \( \bar{\Gamma}^{1}_{11} \).
 
real_t G112
 Conformal christoffel symbol, \( \bar{\Gamma}^{1}_{12} \).
 
real_t G113
 Conformal christoffel symbol, \( \bar{\Gamma}^{1}_{13} \).
 
real_t G122
 Conformal christoffel symbol, \( \bar{\Gamma}^{1}_{22} \).
 
real_t G123
 Conformal christoffel symbol, \( \bar{\Gamma}^{1}_{23} \).
 
real_t G133
 Conformal christoffel symbol, \( \bar{\Gamma}^{1}_{33} \).
 
real_t G211
 Conformal christoffel symbol, \( \bar{\Gamma}^{2}_{11} \).
 
real_t G212
 Conformal christoffel symbol, \( \bar{\Gamma}^{2}_{12} \).
 
real_t G213
 Conformal christoffel symbol, \( \bar{\Gamma}^{2}_{13} \).
 
real_t G222
 Conformal christoffel symbol, \( \bar{\Gamma}^{2}_{22} \).
 
real_t G223
 Conformal christoffel symbol, \( \bar{\Gamma}^{2}_{23} \).
 
real_t G233
 Conformal christoffel symbol, \( \bar{\Gamma}^{2}_{33} \).
 
real_t G311
 Conformal christoffel symbol, \( \bar{\Gamma}^{3}_{11} \).
 
real_t G312
 Conformal christoffel symbol, \( \bar{\Gamma}^{3}_{12} \).
 
real_t G313
 Conformal christoffel symbol, \( \bar{\Gamma}^{3}_{13} \).
 
real_t G322
 Conformal christoffel symbol, \( \bar{\Gamma}^{3}_{22} \).
 
real_t G323
 Conformal christoffel symbol, \( \bar{\Gamma}^{3}_{23} \).
 
real_t G333
 Conformal christoffel symbol, \( \bar{\Gamma}^{3}_{33} \).
 
real_t GL111
 Conformal christoffel symbol of the second kind, \( \bar{\Gamma}_{111} \).
 
real_t GL112
 Conformal christoffel symbol of the second kind, \( \bar{\Gamma}_{112} \).
 
real_t GL113
 Conformal christoffel symbol of the second kind, \( \bar{\Gamma}_{113} \).
 
real_t GL122
 Conformal christoffel symbol of the second kind, \( \bar{\Gamma}_{122} \).
 
real_t GL123
 Conformal christoffel symbol of the second kind, \( \bar{\Gamma}_{123} \).
 
real_t GL133
 Conformal christoffel symbol of the second kind, \( \bar{\Gamma}_{133} \).
 
real_t GL211
 Conformal christoffel symbol of the second kind, \( \bar{\Gamma}_{211} \).
 
real_t GL212
 Conformal christoffel symbol of the second kind, \( \bar{\Gamma}_{212} \).
 
real_t GL213
 Conformal christoffel symbol of the second kind, \( \bar{\Gamma}_{213} \).
 
real_t GL222
 Conformal christoffel symbol of the second kind, \( \bar{\Gamma}_{222} \).
 
real_t GL223
 Conformal christoffel symbol of the second kind, \( \bar{\Gamma}_{223} \).
 
real_t GL233
 Conformal christoffel symbol of the second kind, \( \bar{\Gamma}_{233} \).
 
real_t GL311
 Conformal christoffel symbol of the second kind, \( \bar{\Gamma}_{311} \).
 
real_t GL312
 Conformal christoffel symbol of the second kind, \( \bar{\Gamma}_{312} \).
 
real_t GL313
 Conformal christoffel symbol of the second kind, \( \bar{\Gamma}_{313} \).
 
real_t GL322
 Conformal christoffel symbol of the second kind, \( \bar{\Gamma}_{322} \).
 
real_t GL323
 Conformal christoffel symbol of the second kind, \( \bar{\Gamma}_{323} \).
 
real_t GL333
 Conformal christoffel symbol of the second kind, \( \bar{\Gamma}_{333} \).
 
real_t Gammad1
 Contraction of christoffel symbol (non-dynamical), \(\bar{\gamma}^{ij} \bar{\Gamma}^{1}_{ij}\).
 
real_t Gammad2
 Contraction of christoffel symbol (non-dynamical), \(\bar{\gamma}^{ij} \bar{\Gamma}^{2}_{ij}\).
 
real_t Gammad3
 Contraction of christoffel symbol (non-dynamical), \(\bar{\gamma}^{ij} \bar{\Gamma}^{3}_{ij}\).
 
real_t d1g11
 First partial derivative of the conformal metric, \(\partial_1 \bar{\gamma}_{11} \).
 
real_t d1g12
 First partial derivative of the conformal metric, \(\partial_1 \bar{\gamma}_{12} \).
 
real_t d1g13
 First partial derivative of the conformal metric, \(\partial_1 \bar{\gamma}_{13} \).
 
real_t d1g22
 First partial derivative of the conformal metric, \(\partial_1 \bar{\gamma}_{22} \).
 
real_t d1g23
 First partial derivative of the conformal metric, \(\partial_1 \bar{\gamma}_{23} \).
 
real_t d1g33
 First partial derivative of the conformal metric, \(\partial_1 \bar{\gamma}_{33} \).
 
real_t d2g11
 First partial derivative of the conformal metric, \(\partial_2 \bar{\gamma}_{11} \).
 
real_t d2g12
 First partial derivative of the conformal metric, \(\partial_2 \bar{\gamma}_{12} \).
 
real_t d2g13
 First partial derivative of the conformal metric, \(\partial_2 \bar{\gamma}_{13} \).
 
real_t d2g22
 First partial derivative of the conformal metric, \(\partial_2 \bar{\gamma}_{22} \).
 
real_t d2g23
 First partial derivative of the conformal metric, \(\partial_2 \bar{\gamma}_{23} \).
 
real_t d2g33
 First partial derivative of the conformal metric, \(\partial_2 \bar{\gamma}_{33} \).
 
real_t d3g11
 First partial derivative of the conformal metric, \(\partial_3 \bar{\gamma}_{11} \).
 
real_t d3g12
 First partial derivative of the conformal metric, \(\partial_3 \bar{\gamma}_{12} \).
 
real_t d3g13
 First partial derivative of the conformal metric, \(\partial_3 \bar{\gamma}_{13} \).
 
real_t d3g22
 First partial derivative of the conformal metric, \(\partial_3 \bar{\gamma}_{22} \).
 
real_t d3g23
 First partial derivative of the conformal metric, \(\partial_3 \bar{\gamma}_{23} \).
 
real_t d3g33
 First partial derivative of the conformal metric, \(\partial_3 \bar{\gamma}_{33} \).
 
real_t d1d1g11
 Second partial derivative of the conformal metric, \(\partial_1 \partial_1 \bar{\gamma}_{11}\).
 
real_t d1d1g12
 Second partial derivative of the conformal metric, \(\partial_1 \partial_1 \bar{\gamma}_{12}\).
 
real_t d1d1g13
 Second partial derivative of the conformal metric, \(\partial_1 \partial_1 \bar{\gamma}_{13}\).
 
real_t d1d1g22
 Second partial derivative of the conformal metric, \(\partial_1 \partial_1 \bar{\gamma}_{22}\).
 
real_t d1d1g23
 Second partial derivative of the conformal metric, \(\partial_1 \partial_1 \bar{\gamma}_{23}\).
 
real_t d1d1g33
 Second partial derivative of the conformal metric, \(\partial_1 \partial_1 \bar{\gamma}_{33}\).
 
real_t d1d2g11
 Second partial derivative of the conformal metric, \(\partial_1 \partial_2 \bar{\gamma}_{11}\).
 
real_t d1d2g12
 Second partial derivative of the conformal metric, \(\partial_1 \partial_2 \bar{\gamma}_{12}\).
 
real_t d1d2g13
 Second partial derivative of the conformal metric, \(\partial_1 \partial_2 \bar{\gamma}_{13}\).
 
real_t d1d2g22
 Second partial derivative of the conformal metric, \(\partial_1 \partial_2 \bar{\gamma}_{22}\).
 
real_t d1d2g23
 Second partial derivative of the conformal metric, \(\partial_1 \partial_2 \bar{\gamma}_{23}\).
 
real_t d1d2g33
 Second partial derivative of the conformal metric, \(\partial_1 \partial_2 \bar{\gamma}_{33}\).
 
real_t d1d3g11
 Second partial derivative of the conformal metric, \(\partial_1 \partial_3 \bar{\gamma}_{11}\).
 
real_t d1d3g12
 Second partial derivative of the conformal metric, \(\partial_1 \partial_3 \bar{\gamma}_{12}\).
 
real_t d1d3g13
 Second partial derivative of the conformal metric, \(\partial_1 \partial_3 \bar{\gamma}_{13}\).
 
real_t d1d3g22
 Second partial derivative of the conformal metric, \(\partial_1 \partial_3 \bar{\gamma}_{22}\).
 
real_t d1d3g23
 Second partial derivative of the conformal metric, \(\partial_1 \partial_3 \bar{\gamma}_{23}\).
 
real_t d1d3g33
 Second partial derivative of the conformal metric, \(\partial_1 \partial_3 \bar{\gamma}_{33}\).
 
real_t d2d2g11
 Second partial derivative of the conformal metric, \(\partial_2 \partial_2 \bar{\gamma}_{11}\).
 
real_t d2d2g12
 Second partial derivative of the conformal metric, \(\partial_2 \partial_2 \bar{\gamma}_{12}\).
 
real_t d2d2g13
 Second partial derivative of the conformal metric, \(\partial_2 \partial_2 \bar{\gamma}_{13}\).
 
real_t d2d2g22
 Second partial derivative of the conformal metric, \(\partial_2 \partial_2 \bar{\gamma}_{22}\).
 
real_t d2d2g23
 Second partial derivative of the conformal metric, \(\partial_2 \partial_2 \bar{\gamma}_{23}\).
 
real_t d2d2g33
 Second partial derivative of the conformal metric, \(\partial_2 \partial_2 \bar{\gamma}_{33}\).
 
real_t d2d3g11
 Second partial derivative of the conformal metric, \(\partial_2 \partial_3 \bar{\gamma}_{11}\).
 
real_t d2d3g12
 Second partial derivative of the conformal metric, \(\partial_2 \partial_3 \bar{\gamma}_{12}\).
 
real_t d2d3g13
 Second partial derivative of the conformal metric, \(\partial_2 \partial_3 \bar{\gamma}_{13}\).
 
real_t d2d3g22
 Second partial derivative of the conformal metric, \(\partial_2 \partial_3 \bar{\gamma}_{22}\).
 
real_t d2d3g23
 Second partial derivative of the conformal metric, \(\partial_2 \partial_3 \bar{\gamma}_{23}\).
 
real_t d2d3g33
 Second partial derivative of the conformal metric, \(\partial_2 \partial_3 \bar{\gamma}_{33}\).
 
real_t d3d3g11
 Second partial derivative of the conformal metric, \(\partial_3 \partial_3 \bar{\gamma}_{11}\).
 
real_t d3d3g12
 Second partial derivative of the conformal metric, \(\partial_3 \partial_3 \bar{\gamma}_{12}\).
 
real_t d3d3g13
 Second partial derivative of the conformal metric, \(\partial_3 \partial_3 \bar{\gamma}_{13}\).
 
real_t d3d3g22
 Second partial derivative of the conformal metric, \(\partial_3 \partial_3 \bar{\gamma}_{22}\).
 
real_t d3d3g23
 Second partial derivative of the conformal metric, \(\partial_3 \partial_3 \bar{\gamma}_{23}\).
 
real_t d3d3g33
 Second partial derivative of the conformal metric, \(\partial_3 \partial_3 \bar{\gamma}_{33}\).
 
real_t m00
 
real_t m01
 
real_t m02
 
real_t m03
 
real_t m11
 
real_t m12
 
real_t m13
 
real_t m22
 
real_t m23
 
real_t m33
 
real_t mi00
 
real_t mi01
 
real_t mi02
 
real_t mi03
 
real_t mi11
 
real_t mi12
 
real_t mi13
 
real_t mi22
 
real_t mi23
 
real_t mi33
 
real_t d1m00
 
real_t d1m01
 
real_t d1m02
 
real_t d1m03
 
real_t d1m11
 
real_t d1m12
 
real_t d1m13
 
real_t d1m22
 
real_t d1m23
 
real_t d1m33
 
real_t d2m00
 
real_t d2m01
 
real_t d2m02
 
real_t d2m03
 
real_t d2m11
 
real_t d2m12
 
real_t d2m13
 
real_t d2m22
 
real_t d2m23
 
real_t d2m33
 
real_t d3m00
 
real_t d3m01
 
real_t d3m02
 
real_t d3m03
 
real_t d3m11
 
real_t d3m12
 
real_t d3m13
 
real_t d3m22
 
real_t d3m23
 
real_t d3m33
 
real_t H
 Hamiltonian constraint violation.
 
real_t db
 Misc. re-usable debugging variable.
 
real_t theta
 Z4c \(\theta\) variable.
 
real_t d1theta
 \(\partial_1 \theta\) variable
 
real_t d2theta
 \(\partial_2 \theta\) variable
 
real_t d3theta
 \(\partial_3 \theta\) variable
 
real_t d1beta1
 derivative of shift, \( \partial_1 \beta^1 \)
 
real_t d2beta1
 derivative of shift, \( \partial_2 \beta^1 \)
 
real_t d3beta1
 derivative of shift, \( \partial_3 \beta^1 \)
 
real_t d1beta2
 derivative of shift, \( \partial_1 \beta^2 \)
 
real_t d2beta2
 derivative of shift, \( \partial_2 \beta^2 \)
 
real_t d3beta2
 derivative of shift, \( \partial_3 \beta^2 \)
 
real_t d1beta3
 derivative of shift, \( \partial_1 \beta^3 \)
 
real_t d2beta3
 derivative of shift, \( \partial_2 \beta^3 \)
 
real_t d3beta3
 derivative of shift, \( \partial_3 \beta^3 \)
 
real_t beta1
 shift, \(\beta^1\)
 
real_t beta2
 shift, \(\beta^2\)
 
real_t beta3
 shift, \(\beta^3\)
 
real_t phi_FRW
 Reference FRW variable, \(\phi_{FRW}\).
 
real_t K_FRW
 Reference FRW variable, \(K_{FRW}\).
 
real_t rho_FRW
 Reference FRW variable, \(\rho_{FRW}\).
 
real_t S_FRW
 Reference FRW variable, \(S_{FRW}\).
 
real_t K_avg
 
real_t rho_avg
 
real_t avg_vol
 

Detailed Description

Structure containing BSSN metric variables and various derived quantities, such as derivatives of BSSN variables, christoffel symbols, etc. Most undocumented variables correspond to values taken from a particular field; most derived variables are documented.

Member Data Documentation

real_t cosmo::BSSNData::d1m00

partial of full metric component, \(\partial_1 g_{00}\)

real_t cosmo::BSSNData::d1m01

partial of full metric component, \(\partial_1 g_{01}\)

real_t cosmo::BSSNData::d1m02

partial of full metric component, \(\partial_1 g_{02}\)

real_t cosmo::BSSNData::d1m03

partial of full metric component, \(\partial_1 g_{03}\)

real_t cosmo::BSSNData::d1m11

partial of full metric component, \(\partial_1 g_{11}\)

real_t cosmo::BSSNData::d1m12

partial of full metric component, \(\partial_1 g_{12}\)

real_t cosmo::BSSNData::d1m13

partial of full metric component, \(\partial_1 g_{13}\)

real_t cosmo::BSSNData::d1m22

partial of full metric component, \(\partial_1 g_{22}\)

real_t cosmo::BSSNData::d1m23

partial of full metric component, \(\partial_1 g_{23}\)

real_t cosmo::BSSNData::d1m33

partial of full metric component, \(\partial_1 g_{33}\)

real_t cosmo::BSSNData::d2m00

partial of full metric component, \(\partial_2 g_{00}\)

real_t cosmo::BSSNData::d2m01

partial of full metric component, \(\partial_2 g_{01}\)

real_t cosmo::BSSNData::d2m02

partial of full metric component, \(\partial_2 g_{02}\)

real_t cosmo::BSSNData::d2m03

partial of full metric component, \(\partial_2 g_{03}\)

real_t cosmo::BSSNData::d2m11

partial of full metric component, \(\partial_2 g_{11}\)

real_t cosmo::BSSNData::d2m12

partial of full metric component, \(\partial_2 g_{12}\)

real_t cosmo::BSSNData::d2m13

partial of full metric component, \(\partial_2 g_{13}\)

real_t cosmo::BSSNData::d2m22

partial of full metric component, \(\partial_2 g_{22}\)

real_t cosmo::BSSNData::d2m23

partial of full metric component, \(\partial_2 g_{23}\)

real_t cosmo::BSSNData::d2m33

partial of full metric component, \(\partial_2 g_{33}\)

real_t cosmo::BSSNData::d3m00

partial of full metric component, \(\partial_3 g_{00}\)

real_t cosmo::BSSNData::d3m01

partial of full metric component, \(\partial_3 g_{01}\)

real_t cosmo::BSSNData::d3m02

partial of full metric component, \(\partial_3 g_{02}\)

real_t cosmo::BSSNData::d3m03

partial of full metric component, \(\partial_3 g_{03}\)

real_t cosmo::BSSNData::d3m11

partial of full metric component, \(\partial_3 g_{11}\)

real_t cosmo::BSSNData::d3m12

partial of full metric component, \(\partial_3 g_{12}\)

real_t cosmo::BSSNData::d3m13

partial of full metric component, \(\partial_3 g_{13}\)

real_t cosmo::BSSNData::d3m22

partial of full metric component, \(\partial_3 g_{22}\)

real_t cosmo::BSSNData::d3m23

partial of full metric component, \(\partial_3 g_{23}\)

real_t cosmo::BSSNData::d3m33

partial of full metric component, \(\partial_3 g_{33}\)

real_t cosmo::BSSNData::m00

full metric component, \(g_{00}\)

real_t cosmo::BSSNData::m01

full metric component, \(g_{01}\)

real_t cosmo::BSSNData::m02

full metric component, \(g_{02}\)

real_t cosmo::BSSNData::m03

full metric component, \(g_{03}\)

real_t cosmo::BSSNData::m11

full metric component, \(g_{11}\)

real_t cosmo::BSSNData::m12

full metric component, \(g_{12}\)

real_t cosmo::BSSNData::m13

full metric component, \(g_{13}\)

real_t cosmo::BSSNData::m22

full metric component, \(g_{22}\)

real_t cosmo::BSSNData::m23

full metric component, \(g_{23}\)

real_t cosmo::BSSNData::m33

full metric component, \(g_{33}\)

real_t cosmo::BSSNData::mi00

full inverse metric component, \(g^{00}\)

real_t cosmo::BSSNData::mi01

full inverse metric component, \(g^{01}\)

real_t cosmo::BSSNData::mi02

full inverse metric component, \(g^{02}\)

real_t cosmo::BSSNData::mi03

full inverse metric component, \(g^{03}\)

real_t cosmo::BSSNData::mi11

full inverse metric component, \(g^{11}\)

real_t cosmo::BSSNData::mi12

full inverse metric component, \(g^{12}\)

real_t cosmo::BSSNData::mi13

full inverse metric component, \(g^{13}\)

real_t cosmo::BSSNData::mi22

full inverse metric component, \(g^{22}\)

real_t cosmo::BSSNData::mi23

full inverse metric component, \(g^{23}\)

real_t cosmo::BSSNData::mi33

full inverse metric component, \(g^{33}\)


The documentation for this struct was generated from the following file: