Structure containing BSSN metric variables and various derived quantities, such as derivatives of BSSN variables, christoffel symbols, etc. Most undocumented variables correspond to values taken from a particular field; most derived variables are documented. More...
#include <bssn_data.h>

| Public Attributes | |
| idx_t | i | 
| idx_t | j | 
| idx_t | k | 
| idx_t | idx | 
| real_t | DIFFgamma11 | 
| real_t | DIFFgamma12 | 
| real_t | DIFFgamma13 | 
| real_t | DIFFgamma22 | 
| real_t | DIFFgamma23 | 
| real_t | DIFFgamma33 | 
| real_t | DIFFphi | 
| real_t | A11 | 
| real_t | A12 | 
| real_t | A13 | 
| real_t | A22 | 
| real_t | A23 | 
| real_t | A33 | 
| real_t | DIFFK | 
| real_t | Gamma1 | 
| real_t | Gamma2 | 
| real_t | Gamma3 | 
| real_t | DIFFalpha | 
| real_t | DIFFr | 
| real_t | DIFFS | 
| real_t | S1 | 
| real_t | S2 | 
| real_t | S3 | 
| real_t | STF11 | 
| real_t | STF12 | 
| real_t | STF13 | 
| real_t | STF22 | 
| real_t | STF23 | 
| real_t | STF33 | 
| real_t | ricci | 
| real_t | AijAij | 
| real_t | K0 | 
| real_t | phi | 
| conformal factor \(\phi\) | |
| real_t | K | 
| extrinsic curvature \(K\) | |
| real_t | r | 
| density \(\rho\) | |
| real_t | S | 
| "pressure" (trace of \(S_{ij}\), or \(\gamma^{ij} S_{ij}\)) | |
| real_t | alpha | 
| lapse, \(\alpha\) | |
| real_t | gamma11 | 
| \(\bar{\gamma}_{11}\) (conformal 11 metric component) | |
| real_t | gamma12 | 
| \(\bar{\gamma}_{12}\) (conformal 12 metric component) | |
| real_t | gamma13 | 
| \(\bar{\gamma}_{13}\) (conformal 13 metric component) | |
| real_t | gamma22 | 
| \(\bar{\gamma}_{22}\) (conformal 22 metric component) | |
| real_t | gamma23 | 
| \(\bar{\gamma}_{23}\) (conformal 23 metric component) | |
| real_t | gamma33 | 
| \(\bar{\gamma}_{33}\) (conformal 33 metric component) | |
| real_t | gammai11 | 
| \(\bar{\gamma}^{11}\) (inverse conformal 11 metric component) | |
| real_t | gammai12 | 
| \(\bar{\gamma}^{12}\) (inverse conformal 12 metric component) | |
| real_t | gammai13 | 
| \(\bar{\gamma}^{13}\) (inverse conformal 13 metric component) | |
| real_t | gammai22 | 
| \(\bar{\gamma}^{22}\) (inverse conformal 22 metric component) | |
| real_t | gammai23 | 
| \(\bar{\gamma}^{23}\) (inverse conformal 23 metric component) | |
| real_t | gammai33 | 
| \(\bar{\gamma}^{33}\) (inverse conformal 33 metric component) | |
| real_t | trace | 
| Generic re-usable variable for trace. | |
| real_t | expression | 
| Generic re-usable variable for any expression. | |
| real_t | ricci11 | 
| full Ricci tensor component, \(R_{11}\) | |
| real_t | ricci12 | 
| full Ricci tensor component, \(R_{12}\) | |
| real_t | ricci13 | 
| full Ricci tensor component, \(R_{13}\) | |
| real_t | ricci22 | 
| full Ricci tensor component, \(R_{22}\) | |
| real_t | ricci23 | 
| full Ricci tensor component, \(R_{23}\) | |
| real_t | ricci33 | 
| full Ricci tensor component, \(R_{33}\) | |
| real_t | ricciTF11 | 
| full trace-free Ricci tensor component, \(R_{11}^{TF}\) | |
| real_t | ricciTF12 | 
| full trace-free Ricci tensor component, \(R_{12}^{TF}\) | |
| real_t | ricciTF13 | 
| full trace-free Ricci tensor component, \(R_{13}^{TF}\) | |
| real_t | ricciTF22 | 
| full trace-free Ricci tensor component, \(R_{22}^{TF}\) | |
| real_t | ricciTF23 | 
| full trace-free Ricci tensor component, \(R_{23}^{TF}\) | |
| real_t | ricciTF33 | 
| full trace-free Ricci tensor component, \(R_{33}^{TF}\) | |
| real_t | Uricci11 | 
| unitary Ricci tensor component, \(\bar{R}_{11}\) | |
| real_t | Uricci12 | 
| unitary Ricci tensor component, \(\bar{R}_{12}\) | |
| real_t | Uricci13 | 
| unitary Ricci tensor component, \(\bar{R}_{13}\) | |
| real_t | Uricci22 | 
| unitary Ricci tensor component, \(\bar{R}_{22}\) | |
| real_t | Uricci23 | 
| unitary Ricci tensor component, \(\bar{R}_{23}\) | |
| real_t | Uricci33 | 
| unitary Ricci tensor component, \(\bar{R}_{33}\) | |
| real_t | unitRicci | 
| unitary Ricci scalar, \(\bar{R}\) | |
| real_t | D1D1aTF | 
| trace-free second covariant derivative of lapse, \((D_1 D_1 \alpha)^{TF}\) | |
| real_t | D1D2aTF | 
| trace-free second covariant derivative of lapse, \((D_1 D_2 \alpha)^{TF}\) | |
| real_t | D1D3aTF | 
| trace-free second covariant derivative of lapse, \((D_1 D_3 \alpha)^{TF}\) | |
| real_t | D2D2aTF | 
| trace-free second covariant derivative of lapse, \((D_2 D_2 \alpha)^{TF}\) | |
| real_t | D2D3aTF | 
| trace-free second covariant derivative of lapse, \((D_2 D_3 \alpha)^{TF}\) | |
| real_t | D3D3aTF | 
| trace-free second covariant derivative of lapse, \((D_3 D_3 \alpha)^{TF}\) | |
| real_t | DDaTR | 
| \(\gamma^{ij}D_i D_j \alpha\) | |
| real_t | d1a | 
| partial of alpha, \(\partial_1 \alpha\) | |
| real_t | d2a | 
| partial of alpha, \(\partial_2 \alpha\) | |
| real_t | d3a | 
| partial of alpha, \(\partial_3 \alpha\) | |
| real_t | D1D1phi | 
| conformal covariant second derivative of phi, \(\bar{D}_1 \bar{D}_1 \phi\) | |
| real_t | D1D2phi | 
| conformal covariant second derivative of phi, \(\bar{D}_1 \bar{D}_2 \phi\) | |
| real_t | D1D3phi | 
| conformal covariant second derivative of phi, \(\bar{D}_1 \bar{D}_3 \phi\) | |
| real_t | D2D2phi | 
| conformal covariant second derivative of phi, \(\bar{D}_2 \bar{D}_2 \phi\) | |
| real_t | D2D3phi | 
| conformal covariant second derivative of phi, \(\bar{D}_2 \bar{D}_3 \phi\) | |
| real_t | D3D3phi | 
| conformal covariant second derivative of phi, \(\bar{D}_3 \bar{D}_3 \phi\) | |
| real_t | d1phi | 
| \(\partial_1 \phi \) | |
| real_t | d2phi | 
| \(\partial_2 \phi \) | |
| real_t | d3phi | 
| \(\partial_3 \phi \) | |
| real_t | d1d1phi | 
| partial second derivative of phi, \(\partial_1 \partial_1 \phi\) | |
| real_t | d1d2phi | 
| partial second derivative of phi, \(\partial_1 \partial_2 \phi\) | |
| real_t | d1d3phi | 
| partial second derivative of phi, \(\partial_1 \partial_3 \phi\) | |
| real_t | d2d2phi | 
| partial second derivative of phi, \(\partial_2 \partial_2 \phi\) | |
| real_t | d2d3phi | 
| partial second derivative of phi, \(\partial_2 \partial_3 \phi\) | |
| real_t | d3d3phi | 
| partial second derivative of phi, \(\partial_3 \partial_3 \phi\) | |
| real_t | d1K | 
| \(\partial_1 K\) | |
| real_t | d2K | 
| \(\partial_2 K\) | |
| real_t | d3K | 
| \(\partial_3 K\) | |
| real_t | Acont11 | 
| Contravariant form of conformal trace-free extrinsic curvature, \( \bar{A}^{11} \). | |
| real_t | Acont12 | 
| Contravariant form of conformal trace-free extrinsic curvature, \( \bar{A}^{12} \). | |
| real_t | Acont13 | 
| Contravariant form of conformal trace-free extrinsic curvature, \( \bar{A}^{13} \). | |
| real_t | Acont22 | 
| Contravariant form of conformal trace-free extrinsic curvature, \( \bar{A}^{22} \). | |
| real_t | Acont23 | 
| Contravariant form of conformal trace-free extrinsic curvature, \( \bar{A}^{23} \). | |
| real_t | Acont33 | 
| Contravariant form of conformal trace-free extrinsic curvature, \( \bar{A}^{33} \). | |
| real_t | G111 | 
| Conformal christoffel symbol, \( \bar{\Gamma}^{1}_{11} \). | |
| real_t | G112 | 
| Conformal christoffel symbol, \( \bar{\Gamma}^{1}_{12} \). | |
| real_t | G113 | 
| Conformal christoffel symbol, \( \bar{\Gamma}^{1}_{13} \). | |
| real_t | G122 | 
| Conformal christoffel symbol, \( \bar{\Gamma}^{1}_{22} \). | |
| real_t | G123 | 
| Conformal christoffel symbol, \( \bar{\Gamma}^{1}_{23} \). | |
| real_t | G133 | 
| Conformal christoffel symbol, \( \bar{\Gamma}^{1}_{33} \). | |
| real_t | G211 | 
| Conformal christoffel symbol, \( \bar{\Gamma}^{2}_{11} \). | |
| real_t | G212 | 
| Conformal christoffel symbol, \( \bar{\Gamma}^{2}_{12} \). | |
| real_t | G213 | 
| Conformal christoffel symbol, \( \bar{\Gamma}^{2}_{13} \). | |
| real_t | G222 | 
| Conformal christoffel symbol, \( \bar{\Gamma}^{2}_{22} \). | |
| real_t | G223 | 
| Conformal christoffel symbol, \( \bar{\Gamma}^{2}_{23} \). | |
| real_t | G233 | 
| Conformal christoffel symbol, \( \bar{\Gamma}^{2}_{33} \). | |
| real_t | G311 | 
| Conformal christoffel symbol, \( \bar{\Gamma}^{3}_{11} \). | |
| real_t | G312 | 
| Conformal christoffel symbol, \( \bar{\Gamma}^{3}_{12} \). | |
| real_t | G313 | 
| Conformal christoffel symbol, \( \bar{\Gamma}^{3}_{13} \). | |
| real_t | G322 | 
| Conformal christoffel symbol, \( \bar{\Gamma}^{3}_{22} \). | |
| real_t | G323 | 
| Conformal christoffel symbol, \( \bar{\Gamma}^{3}_{23} \). | |
| real_t | G333 | 
| Conformal christoffel symbol, \( \bar{\Gamma}^{3}_{33} \). | |
| real_t | GL111 | 
| Conformal christoffel symbol of the second kind, \( \bar{\Gamma}_{111} \). | |
| real_t | GL112 | 
| Conformal christoffel symbol of the second kind, \( \bar{\Gamma}_{112} \). | |
| real_t | GL113 | 
| Conformal christoffel symbol of the second kind, \( \bar{\Gamma}_{113} \). | |
| real_t | GL122 | 
| Conformal christoffel symbol of the second kind, \( \bar{\Gamma}_{122} \). | |
| real_t | GL123 | 
| Conformal christoffel symbol of the second kind, \( \bar{\Gamma}_{123} \). | |
| real_t | GL133 | 
| Conformal christoffel symbol of the second kind, \( \bar{\Gamma}_{133} \). | |
| real_t | GL211 | 
| Conformal christoffel symbol of the second kind, \( \bar{\Gamma}_{211} \). | |
| real_t | GL212 | 
| Conformal christoffel symbol of the second kind, \( \bar{\Gamma}_{212} \). | |
| real_t | GL213 | 
| Conformal christoffel symbol of the second kind, \( \bar{\Gamma}_{213} \). | |
| real_t | GL222 | 
| Conformal christoffel symbol of the second kind, \( \bar{\Gamma}_{222} \). | |
| real_t | GL223 | 
| Conformal christoffel symbol of the second kind, \( \bar{\Gamma}_{223} \). | |
| real_t | GL233 | 
| Conformal christoffel symbol of the second kind, \( \bar{\Gamma}_{233} \). | |
| real_t | GL311 | 
| Conformal christoffel symbol of the second kind, \( \bar{\Gamma}_{311} \). | |
| real_t | GL312 | 
| Conformal christoffel symbol of the second kind, \( \bar{\Gamma}_{312} \). | |
| real_t | GL313 | 
| Conformal christoffel symbol of the second kind, \( \bar{\Gamma}_{313} \). | |
| real_t | GL322 | 
| Conformal christoffel symbol of the second kind, \( \bar{\Gamma}_{322} \). | |
| real_t | GL323 | 
| Conformal christoffel symbol of the second kind, \( \bar{\Gamma}_{323} \). | |
| real_t | GL333 | 
| Conformal christoffel symbol of the second kind, \( \bar{\Gamma}_{333} \). | |
| real_t | Gammad1 | 
| Contraction of christoffel symbol (non-dynamical), \(\bar{\gamma}^{ij} \bar{\Gamma}^{1}_{ij}\). | |
| real_t | Gammad2 | 
| Contraction of christoffel symbol (non-dynamical), \(\bar{\gamma}^{ij} \bar{\Gamma}^{2}_{ij}\). | |
| real_t | Gammad3 | 
| Contraction of christoffel symbol (non-dynamical), \(\bar{\gamma}^{ij} \bar{\Gamma}^{3}_{ij}\). | |
| real_t | d1g11 | 
| First partial derivative of the conformal metric, \(\partial_1 \bar{\gamma}_{11} \). | |
| real_t | d1g12 | 
| First partial derivative of the conformal metric, \(\partial_1 \bar{\gamma}_{12} \). | |
| real_t | d1g13 | 
| First partial derivative of the conformal metric, \(\partial_1 \bar{\gamma}_{13} \). | |
| real_t | d1g22 | 
| First partial derivative of the conformal metric, \(\partial_1 \bar{\gamma}_{22} \). | |
| real_t | d1g23 | 
| First partial derivative of the conformal metric, \(\partial_1 \bar{\gamma}_{23} \). | |
| real_t | d1g33 | 
| First partial derivative of the conformal metric, \(\partial_1 \bar{\gamma}_{33} \). | |
| real_t | d2g11 | 
| First partial derivative of the conformal metric, \(\partial_2 \bar{\gamma}_{11} \). | |
| real_t | d2g12 | 
| First partial derivative of the conformal metric, \(\partial_2 \bar{\gamma}_{12} \). | |
| real_t | d2g13 | 
| First partial derivative of the conformal metric, \(\partial_2 \bar{\gamma}_{13} \). | |
| real_t | d2g22 | 
| First partial derivative of the conformal metric, \(\partial_2 \bar{\gamma}_{22} \). | |
| real_t | d2g23 | 
| First partial derivative of the conformal metric, \(\partial_2 \bar{\gamma}_{23} \). | |
| real_t | d2g33 | 
| First partial derivative of the conformal metric, \(\partial_2 \bar{\gamma}_{33} \). | |
| real_t | d3g11 | 
| First partial derivative of the conformal metric, \(\partial_3 \bar{\gamma}_{11} \). | |
| real_t | d3g12 | 
| First partial derivative of the conformal metric, \(\partial_3 \bar{\gamma}_{12} \). | |
| real_t | d3g13 | 
| First partial derivative of the conformal metric, \(\partial_3 \bar{\gamma}_{13} \). | |
| real_t | d3g22 | 
| First partial derivative of the conformal metric, \(\partial_3 \bar{\gamma}_{22} \). | |
| real_t | d3g23 | 
| First partial derivative of the conformal metric, \(\partial_3 \bar{\gamma}_{23} \). | |
| real_t | d3g33 | 
| First partial derivative of the conformal metric, \(\partial_3 \bar{\gamma}_{33} \). | |
| real_t | d1d1g11 | 
| Second partial derivative of the conformal metric, \(\partial_1 \partial_1 \bar{\gamma}_{11}\). | |
| real_t | d1d1g12 | 
| Second partial derivative of the conformal metric, \(\partial_1 \partial_1 \bar{\gamma}_{12}\). | |
| real_t | d1d1g13 | 
| Second partial derivative of the conformal metric, \(\partial_1 \partial_1 \bar{\gamma}_{13}\). | |
| real_t | d1d1g22 | 
| Second partial derivative of the conformal metric, \(\partial_1 \partial_1 \bar{\gamma}_{22}\). | |
| real_t | d1d1g23 | 
| Second partial derivative of the conformal metric, \(\partial_1 \partial_1 \bar{\gamma}_{23}\). | |
| real_t | d1d1g33 | 
| Second partial derivative of the conformal metric, \(\partial_1 \partial_1 \bar{\gamma}_{33}\). | |
| real_t | d1d2g11 | 
| Second partial derivative of the conformal metric, \(\partial_1 \partial_2 \bar{\gamma}_{11}\). | |
| real_t | d1d2g12 | 
| Second partial derivative of the conformal metric, \(\partial_1 \partial_2 \bar{\gamma}_{12}\). | |
| real_t | d1d2g13 | 
| Second partial derivative of the conformal metric, \(\partial_1 \partial_2 \bar{\gamma}_{13}\). | |
| real_t | d1d2g22 | 
| Second partial derivative of the conformal metric, \(\partial_1 \partial_2 \bar{\gamma}_{22}\). | |
| real_t | d1d2g23 | 
| Second partial derivative of the conformal metric, \(\partial_1 \partial_2 \bar{\gamma}_{23}\). | |
| real_t | d1d2g33 | 
| Second partial derivative of the conformal metric, \(\partial_1 \partial_2 \bar{\gamma}_{33}\). | |
| real_t | d1d3g11 | 
| Second partial derivative of the conformal metric, \(\partial_1 \partial_3 \bar{\gamma}_{11}\). | |
| real_t | d1d3g12 | 
| Second partial derivative of the conformal metric, \(\partial_1 \partial_3 \bar{\gamma}_{12}\). | |
| real_t | d1d3g13 | 
| Second partial derivative of the conformal metric, \(\partial_1 \partial_3 \bar{\gamma}_{13}\). | |
| real_t | d1d3g22 | 
| Second partial derivative of the conformal metric, \(\partial_1 \partial_3 \bar{\gamma}_{22}\). | |
| real_t | d1d3g23 | 
| Second partial derivative of the conformal metric, \(\partial_1 \partial_3 \bar{\gamma}_{23}\). | |
| real_t | d1d3g33 | 
| Second partial derivative of the conformal metric, \(\partial_1 \partial_3 \bar{\gamma}_{33}\). | |
| real_t | d2d2g11 | 
| Second partial derivative of the conformal metric, \(\partial_2 \partial_2 \bar{\gamma}_{11}\). | |
| real_t | d2d2g12 | 
| Second partial derivative of the conformal metric, \(\partial_2 \partial_2 \bar{\gamma}_{12}\). | |
| real_t | d2d2g13 | 
| Second partial derivative of the conformal metric, \(\partial_2 \partial_2 \bar{\gamma}_{13}\). | |
| real_t | d2d2g22 | 
| Second partial derivative of the conformal metric, \(\partial_2 \partial_2 \bar{\gamma}_{22}\). | |
| real_t | d2d2g23 | 
| Second partial derivative of the conformal metric, \(\partial_2 \partial_2 \bar{\gamma}_{23}\). | |
| real_t | d2d2g33 | 
| Second partial derivative of the conformal metric, \(\partial_2 \partial_2 \bar{\gamma}_{33}\). | |
| real_t | d2d3g11 | 
| Second partial derivative of the conformal metric, \(\partial_2 \partial_3 \bar{\gamma}_{11}\). | |
| real_t | d2d3g12 | 
| Second partial derivative of the conformal metric, \(\partial_2 \partial_3 \bar{\gamma}_{12}\). | |
| real_t | d2d3g13 | 
| Second partial derivative of the conformal metric, \(\partial_2 \partial_3 \bar{\gamma}_{13}\). | |
| real_t | d2d3g22 | 
| Second partial derivative of the conformal metric, \(\partial_2 \partial_3 \bar{\gamma}_{22}\). | |
| real_t | d2d3g23 | 
| Second partial derivative of the conformal metric, \(\partial_2 \partial_3 \bar{\gamma}_{23}\). | |
| real_t | d2d3g33 | 
| Second partial derivative of the conformal metric, \(\partial_2 \partial_3 \bar{\gamma}_{33}\). | |
| real_t | d3d3g11 | 
| Second partial derivative of the conformal metric, \(\partial_3 \partial_3 \bar{\gamma}_{11}\). | |
| real_t | d3d3g12 | 
| Second partial derivative of the conformal metric, \(\partial_3 \partial_3 \bar{\gamma}_{12}\). | |
| real_t | d3d3g13 | 
| Second partial derivative of the conformal metric, \(\partial_3 \partial_3 \bar{\gamma}_{13}\). | |
| real_t | d3d3g22 | 
| Second partial derivative of the conformal metric, \(\partial_3 \partial_3 \bar{\gamma}_{22}\). | |
| real_t | d3d3g23 | 
| Second partial derivative of the conformal metric, \(\partial_3 \partial_3 \bar{\gamma}_{23}\). | |
| real_t | d3d3g33 | 
| Second partial derivative of the conformal metric, \(\partial_3 \partial_3 \bar{\gamma}_{33}\). | |
| real_t | m00 | 
| real_t | m01 | 
| real_t | m02 | 
| real_t | m03 | 
| real_t | m11 | 
| real_t | m12 | 
| real_t | m13 | 
| real_t | m22 | 
| real_t | m23 | 
| real_t | m33 | 
| real_t | mi00 | 
| real_t | mi01 | 
| real_t | mi02 | 
| real_t | mi03 | 
| real_t | mi11 | 
| real_t | mi12 | 
| real_t | mi13 | 
| real_t | mi22 | 
| real_t | mi23 | 
| real_t | mi33 | 
| real_t | d1m00 | 
| real_t | d1m01 | 
| real_t | d1m02 | 
| real_t | d1m03 | 
| real_t | d1m11 | 
| real_t | d1m12 | 
| real_t | d1m13 | 
| real_t | d1m22 | 
| real_t | d1m23 | 
| real_t | d1m33 | 
| real_t | d2m00 | 
| real_t | d2m01 | 
| real_t | d2m02 | 
| real_t | d2m03 | 
| real_t | d2m11 | 
| real_t | d2m12 | 
| real_t | d2m13 | 
| real_t | d2m22 | 
| real_t | d2m23 | 
| real_t | d2m33 | 
| real_t | d3m00 | 
| real_t | d3m01 | 
| real_t | d3m02 | 
| real_t | d3m03 | 
| real_t | d3m11 | 
| real_t | d3m12 | 
| real_t | d3m13 | 
| real_t | d3m22 | 
| real_t | d3m23 | 
| real_t | d3m33 | 
| real_t | H | 
| Hamiltonian constraint violation. | |
| real_t | db | 
| Misc. re-usable debugging variable. | |
| real_t | theta | 
| Z4c \(\theta\) variable. | |
| real_t | d1theta | 
| \(\partial_1 \theta\) variable | |
| real_t | d2theta | 
| \(\partial_2 \theta\) variable | |
| real_t | d3theta | 
| \(\partial_3 \theta\) variable | |
| real_t | d1beta1 | 
| derivative of shift, \( \partial_1 \beta^1 \) | |
| real_t | d2beta1 | 
| derivative of shift, \( \partial_2 \beta^1 \) | |
| real_t | d3beta1 | 
| derivative of shift, \( \partial_3 \beta^1 \) | |
| real_t | d1beta2 | 
| derivative of shift, \( \partial_1 \beta^2 \) | |
| real_t | d2beta2 | 
| derivative of shift, \( \partial_2 \beta^2 \) | |
| real_t | d3beta2 | 
| derivative of shift, \( \partial_3 \beta^2 \) | |
| real_t | d1beta3 | 
| derivative of shift, \( \partial_1 \beta^3 \) | |
| real_t | d2beta3 | 
| derivative of shift, \( \partial_2 \beta^3 \) | |
| real_t | d3beta3 | 
| derivative of shift, \( \partial_3 \beta^3 \) | |
| real_t | beta1 | 
| shift, \(\beta^1\) | |
| real_t | beta2 | 
| shift, \(\beta^2\) | |
| real_t | beta3 | 
| shift, \(\beta^3\) | |
| real_t | phi_FRW | 
| Reference FRW variable, \(\phi_{FRW}\). | |
| real_t | K_FRW | 
| Reference FRW variable, \(K_{FRW}\). | |
| real_t | rho_FRW | 
| Reference FRW variable, \(\rho_{FRW}\). | |
| real_t | S_FRW | 
| Reference FRW variable, \(S_{FRW}\). | |
| real_t | K_avg | 
| real_t | rho_avg | 
| real_t | avg_vol | 
Structure containing BSSN metric variables and various derived quantities, such as derivatives of BSSN variables, christoffel symbols, etc. Most undocumented variables correspond to values taken from a particular field; most derived variables are documented.
| real_t cosmo::BSSNData::d1m00 | 
partial of full metric component, \(\partial_1 g_{00}\)
| real_t cosmo::BSSNData::d1m01 | 
partial of full metric component, \(\partial_1 g_{01}\)
| real_t cosmo::BSSNData::d1m02 | 
partial of full metric component, \(\partial_1 g_{02}\)
| real_t cosmo::BSSNData::d1m03 | 
partial of full metric component, \(\partial_1 g_{03}\)
| real_t cosmo::BSSNData::d1m11 | 
partial of full metric component, \(\partial_1 g_{11}\)
| real_t cosmo::BSSNData::d1m12 | 
partial of full metric component, \(\partial_1 g_{12}\)
| real_t cosmo::BSSNData::d1m13 | 
partial of full metric component, \(\partial_1 g_{13}\)
| real_t cosmo::BSSNData::d1m22 | 
partial of full metric component, \(\partial_1 g_{22}\)
| real_t cosmo::BSSNData::d1m23 | 
partial of full metric component, \(\partial_1 g_{23}\)
| real_t cosmo::BSSNData::d1m33 | 
partial of full metric component, \(\partial_1 g_{33}\)
| real_t cosmo::BSSNData::d2m00 | 
partial of full metric component, \(\partial_2 g_{00}\)
| real_t cosmo::BSSNData::d2m01 | 
partial of full metric component, \(\partial_2 g_{01}\)
| real_t cosmo::BSSNData::d2m02 | 
partial of full metric component, \(\partial_2 g_{02}\)
| real_t cosmo::BSSNData::d2m03 | 
partial of full metric component, \(\partial_2 g_{03}\)
| real_t cosmo::BSSNData::d2m11 | 
partial of full metric component, \(\partial_2 g_{11}\)
| real_t cosmo::BSSNData::d2m12 | 
partial of full metric component, \(\partial_2 g_{12}\)
| real_t cosmo::BSSNData::d2m13 | 
partial of full metric component, \(\partial_2 g_{13}\)
| real_t cosmo::BSSNData::d2m22 | 
partial of full metric component, \(\partial_2 g_{22}\)
| real_t cosmo::BSSNData::d2m23 | 
partial of full metric component, \(\partial_2 g_{23}\)
| real_t cosmo::BSSNData::d2m33 | 
partial of full metric component, \(\partial_2 g_{33}\)
| real_t cosmo::BSSNData::d3m00 | 
partial of full metric component, \(\partial_3 g_{00}\)
| real_t cosmo::BSSNData::d3m01 | 
partial of full metric component, \(\partial_3 g_{01}\)
| real_t cosmo::BSSNData::d3m02 | 
partial of full metric component, \(\partial_3 g_{02}\)
| real_t cosmo::BSSNData::d3m03 | 
partial of full metric component, \(\partial_3 g_{03}\)
| real_t cosmo::BSSNData::d3m11 | 
partial of full metric component, \(\partial_3 g_{11}\)
| real_t cosmo::BSSNData::d3m12 | 
partial of full metric component, \(\partial_3 g_{12}\)
| real_t cosmo::BSSNData::d3m13 | 
partial of full metric component, \(\partial_3 g_{13}\)
| real_t cosmo::BSSNData::d3m22 | 
partial of full metric component, \(\partial_3 g_{22}\)
| real_t cosmo::BSSNData::d3m23 | 
partial of full metric component, \(\partial_3 g_{23}\)
| real_t cosmo::BSSNData::d3m33 | 
partial of full metric component, \(\partial_3 g_{33}\)
| real_t cosmo::BSSNData::m00 | 
full metric component, \(g_{00}\)
| real_t cosmo::BSSNData::m01 | 
full metric component, \(g_{01}\)
| real_t cosmo::BSSNData::m02 | 
full metric component, \(g_{02}\)
| real_t cosmo::BSSNData::m03 | 
full metric component, \(g_{03}\)
| real_t cosmo::BSSNData::m11 | 
full metric component, \(g_{11}\)
| real_t cosmo::BSSNData::m12 | 
full metric component, \(g_{12}\)
| real_t cosmo::BSSNData::m13 | 
full metric component, \(g_{13}\)
| real_t cosmo::BSSNData::m22 | 
full metric component, \(g_{22}\)
| real_t cosmo::BSSNData::m23 | 
full metric component, \(g_{23}\)
| real_t cosmo::BSSNData::m33 | 
full metric component, \(g_{33}\)
| real_t cosmo::BSSNData::mi00 | 
full inverse metric component, \(g^{00}\)
| real_t cosmo::BSSNData::mi01 | 
full inverse metric component, \(g^{01}\)
| real_t cosmo::BSSNData::mi02 | 
full inverse metric component, \(g^{02}\)
| real_t cosmo::BSSNData::mi03 | 
full inverse metric component, \(g^{03}\)
| real_t cosmo::BSSNData::mi11 | 
full inverse metric component, \(g^{11}\)
| real_t cosmo::BSSNData::mi12 | 
full inverse metric component, \(g^{12}\)
| real_t cosmo::BSSNData::mi13 | 
full inverse metric component, \(g^{13}\)
| real_t cosmo::BSSNData::mi22 | 
full inverse metric component, \(g^{22}\)
| real_t cosmo::BSSNData::mi23 | 
full inverse metric component, \(g^{23}\)
| real_t cosmo::BSSNData::mi33 | 
full inverse metric component, \(g^{33}\)